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Abstract

In this paper, the interaction between two collinear cracks in the piezoelectric materials under anti-plane shear
loading was investigated by using the non-local theory for impermeable crack-face conditions. By using the Fourier
transform, the problem can be solved with the help of two pairs of triple integral equations. The solutions are obtained
by using the Schmidt method. Numerical examples are provided to show the effect of the geometry of the interacting
cracks. Contrary to the previous results, it is found that no stress and electric displacement singularity is present near
the crack tip. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is well known that piezoelectric materials produce an electric field when deformed, and undergo de-
formation when subjected to an electric field. The coupling nature of piezoelectric materials has attracted
wide applications in electric-mechanical and electric devices, such as electric-mechanical actuators, sensors
and structures. When subjected to mechanical and electrical loads in service, these piezoelectric materials
can fail prematurely due to their brittleness and presence of defects or flaws produced during their man-
ufacturing process. Therefore, it is important to study the electro-elastic interaction and fracture behaviors
of piezoelectric materials.

Many studies have been made on the electro-elastic fracture mechanics based on the modeling and
analyzing of one crack in the piezoelectric materials. (see, for examples, Deeg (1980), Pak (1990, 1992), Sosa
(1992), Suo et al. (1992), Park and Sun (1995a,b), Zhang and Tong (1996), Zhang et al. (1998), Gao et al.
(1997), Wang (1992) and Shindo et al. (1996)). The problem of the interacting fields among multiple cracks
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in a piezoelectric materials has been studied by Han and Wang (1999). In Han’s paper, the crack is treated
as a continuous distributed dislocations with the density function to be determined according to the
conditions of external loads and crack surface. Most recently, Chen and Karihaloo (1999) considered an
infinite piezoelectric ceramic with impermeable crack-face boundary condition under arbitrary electro-
mechanical impact. Sosa and Khutoryansky (1999) investigated the response of piezoelectric bodies created
by internal electric sources. For the sake of analytical simplification, the assumption that the crack surfaces
are impermeable to electric fields was widely used in the works (Pak, 1990, 1992; Suo et al., 1992; Suo, 1993;
Park and Sun, 1995a,b; Chen and Karihaloo, 1999). However, these solutions contain stress and electric
displacement singularity. This is not reasonable according to the physical nature. To overcome the stress
singularity in the classical elastic theory, Eringen et al. (1977) and Eringen (1978, 1979) used the non-local
theory to study the state of stress near the tip of a sharp line crack in an elastic plate subjected to the
uniform tension, shear and anti-plane shear. These solutions did not contain any stress singularity, thus
resolved a fundamental problem that persisted over many years. This enables us to employ the maximum
stress hypothesis to deal with fracture problems in a natural way.

In the present paper, the interaction between two collinear symmetrical cracks subjected to the anti-
plane shear in piezoelectric materials was investigated by using the non-local theory for impermeable crack-
face conditions. The traditional concept of linear elastic fracture mechanics and the non-local theory are
extended to include the piezoelectric effects. Fourier transform technique is applied and a mixed boundary-
value problem is reduced to two pair of triple integral equations. In solving the triple integral equations, the
crack surface displacement and electric potential are expanded in a series using Jacobi’s polynomials, and
the Schmidt method (Morse and Feshbach, 1958) is used to obtain the solution. This process is quite
different from those adopted in the references mentioned above. As expected, the solution in this paper does
not contain the stress and electric displacement singularity at the crack tip, thus clearly indicating the
physical nature of the problem, namely, in the vicinity of the geometrical discontinuities in the body, the
non-local intermolecular forces are dominant. For such problems, therefore, one can resort to theories
incorporating non-local effects, at least in the neighborhood of the discontinuities.

2. Basic equations of non-local piezoelectric materials

According to non-local theory (see e.g. Eringen (1979)), for the anti-plane shear problem, the basic
equations of linear, homogeneous, isotropic, piezoelectric materials, with vanishing body force are

e 0
aaz" + % =0 (2)
w0 = [ [l = X)wa) + (X' = XS,V ), k= G)
D) = [ s = Xwal) = 6, = XAV, k=, @)

where the only difference from classical theory is Egs. (3) and (4), in which the stress 7., (X) and the electric
displacement D, (X) at a point X depends on w,(X) and ¢ ,(X), at all points of the body. w and ¢ are the
mechanical displacement and electric potential. For homogeneous and isotropic piezoelectric materials
there exist only three material parameters, ¢, (|JX’ — X|), e|s(|]X’ — X|) and &, (|X" — X|) which are functions



Z.-G. Zhou, B. Wang | International Journal of Solids and Structures 39 (2002) 1731-1742 1733

of the distance |[X’ — X|. The integrals in (3) and (4) are over the volume V" of the body enclosed within a
surface 0V.

As discussed in the papers (see e.g. Eringen (1974, 1977)), it can be assumed in the form of ¢, (|[X’' — X),
€\s(|X' — X|) and &}, (]X’ — X|) for which the dispersion curves of plane elastic waves coincide with those
known in lattice dynamics. Among several possible curves, the non-local moduli ¢}, |5 and ¢}, are assumed
to have the same form as:

(Chys €15 €11) = (cas, ers, en1)a(|X" — X) (5)
(| X' — X|) = g exp[—(B/a)’ (X' — X) (X' — X)] (6)

where f is a constant, a is the lattice parameter and cy, €5, €1 are the shear modulus, piezoelectric
coefficient and dielectric parameter, respectively. o is determined by the normalization condition:

/V 21X~ X)) dV (X)) = 1 (7)

In the present work, the non-local moduli was given by (5) and (6). Substituting (6) into (7), it can be
obtained, in two dimensional space,

1
o =—(f/a)’ (8)
Y
Substitution of Egs. (5) and (6) into Egs. (3) and (4) yields

2e(X) = / 21X~ X[)ou(X)dV(XY), k=x,y 9)
14
D) = [ ol = XDDOO)AVQ), k= (10)
|4
where
O = CagWy +eisdy, k=xy (11)
D =eiswy; — 8119‘[)‘;(, k=x,y (12)

The expressions (11) and (12) are the classical constitutive equations.

3. The crack model

Consider an infinite piezoelectric body containing two collinear symmetric impermeable cracks of length
1 — b along the x-axis with the distance between two cracks being 2b (see Fig. 1). The piezoelectric
boundary-value problem is considerably simplified if we consider only the out-of-plane displacement and
the in-plane electric fields. The plate is subjected to a constant stress 7,. = —79, and a constant electric
displacement D, = —D, along the surface of the cracks. As discussed in the references by Narita and Shindo
(1998); Shindo et al. (1996); Yu and Chen (1998) and Eringen (1979), the boundary conditions of the
present problem are:

T:(x,0) = —19, b |x|<1 (13)
Dy(x,0) = =Dy, b<x[<1 (14)

w(x,0) = ¢(x,0) =0, |x] <b, |x|>1 (15)
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Fig. 1. Cracks in a piezoelectric materials body under anti-plane shear.

w(x,y) = ¢(x,y) =0, for (x* —|—y2)1/2 — 00 (16)

Substituting Egs. (9) and (10) into Egs. (1) and (2), respectively, using Green—Gauss theorem, it can be
obtained (see e.g. Eringen (1979)):

/ / 2|7 — 31,1 — s VP, y) + eisV2 ()] v’ dyf

(/ / ) (¥ = x|, 0){0,- (¥, 0)} &’ = 0 (17)

/ / a(l¥ — 2, Y — WDeisVPw ) — en V2, )] d dyf

(/ / ) (¥ — x|, 0){D5 (¥, 0)} &’ = 0 (18)

where the curly bracket indicates a jump at the crack line, ie. {0,.(x,0)} = 6,.(x,07) — 0,.(x,07),
{D5(x,0)} = D5 (x,0%) — D (x,07). V* = 8°/dx* + 0% /9y is the two dimensional Laplace operator. Because
of the assumed symmetry in geometry and loading, it is sufficient to consider the problem for 0 <x < oo,
0 <y < oo only. Under the applied anti-plane shear load on the unopened surfaces of the crack, the dis-
placement field and the electric displacement possess the following symmetry regulations

wix, —y) = -w(x,»), ¢, -y)=—-0(x)) (19)
Using Eq. (19), we find that

{02(x,0)} =0 (20)

{D{(x,0)} =0 (21)

Hence the line integrals in (17) and (18) vanish. By taking the Fourier transform of (17) and (18) with
respect to x’, it can be shown that the general solutions of (17) and (18) are identical to that of

Caq4 [dtﬁi’y) - SZW(S,J/) d(iijy) - szd)(s,y)} =0 (22)

eys ld v:iis; ) s w(s, y)] —én [—d ¢§}s,y) - SZ‘I"(SJ’)] =0 (23)

+ e1s
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almost everywhere. Here a superposed bar indicates the Fourier transform,
Flo) = [ ) explisn) d
The general solutions of Egs. (22) and (23) (y > 0) satisfying (16) are, respectively:
w(x,y) = % /OOOA(s)e”‘y cos(xs)ds, o(x,y) — %w(x,y) = % /OOO B(s)e™ cos(xs)ds (24)

where A(s), B(s) are unknown functions to be determined by the boundary conditions.
The stress field and the electric displacement, according to (9) and (10), are given by, respectively

sulin) =2 [ [rusds) ~ ersss))ds [ oy

T

8 /,%[O‘(W =l [ = 1) o] = x|, [+ y])Je™ cos(sx) dx (25)

o0

2 > > / > / / —sy’
D) == [ ousB(s)ds [y [ ol sl <o)+ 2l =l b+l costs)ds (20

where = cas + (€5/e11)-
Substituting for a from (6), according to the reference (see e.g. Eringen (1979)) and the boundary
conditions (13)—(15), it can be obtained

2 (™ 1

2 [ sapetetescoston)as = (7 + B2 ), b o)

T Jo u e

2 o

;/ A(s)cos(sx)ds =0, |x|] <b, |x|>1 (28)
0

and

2 [ Dy

2 / sB(s)erfc(es) cos(sx)ds = — 20, b<|x| <1 (29)

T Jo €11

2 o

7/ B(s)cos(sx)ds =0, |x| <b, |x|] >1 (30)

T Jo

where & = a/2p, erfc(z) = 1 — @(z), D(z) = (2//7) [, exp(—)dr.

Since the only difference between the classical and the non-local equations is in the introduction of the
function erfc(es), it is logical to utilize the classical solution to convert the system (27)—(30) to an integral
equation of the second kind which is generally better behaved. For a = 0, erfc(es) = 1 and Egs. (27)—(30)
reduce to the triple integral equations for same problem in classical piezoelectric materials. To determine
the unknown functions A(s) and B(s), the dual-integral equations (27)—(30) must be solved.

4. Solution of the triple integral equation

The triple integral equations (27)—(30) cannot be transformed into the second Fredholm integral
equation (Eringen, 1979), because the kernel of the second kind Fredholm integral equation in the paper of
Eringen (Eringen, 1979) is divergent. The kernel of the second kind Fredholm integral equation in Eringen’s
paper (Eringen, 1979) can be written as follows:

L(x,u) = (xu)l/z/ th(et)Jo(xt)Jo(ut)de, 0<x,u<]
0
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where J,(x) is the Bessel function of order n.

k(et) = —@(et), }imk(at) #0 fore= #0

Zﬁl
where / is the length of the crack.

2 1
Jo(x) = \/acos (x—rz) for x>0

The limit of tk(er)Jy(xt)Jo (ut) does not equal to zero for ¢+ — oo. So the kernel L(x, u) in Eringen’s paper is
divergent (see e.g. Eringen (1979)). Of course, the triple integral equations can be considered to be a single
integral equation of the first kind with a discontinuous kernel (see e.g. Eringen et al. (1977)). It is well
known in the literature that integral equations of the first kind are generally ill-posed in sense of Hadamard,
i.e. small perturbations of the data can yield arbitrarily large changes in the solution. This makes the
numerical solution of such equations quite difficult. To overcome this difficulty, the Schmidt method
(Morse and Feshbach, 1958) is used to solve the triple integral equations (27)—(30). The displacement w and
the electric potential ¢ can be represented by the following series:

~ 14  l4b N\ 1/2
_ Zanpygl/z,l/z) (x ﬂ2 ) (1 B (x(lbz)z) ) , forb<x<l1, y=0 (31)
n=0 2 >

w(x,0)=0, forx>1, x<b, y=0 (32)

2

00 1+h 1452 12
anp,jl/zl/z <xl—j> <1—(x( .) ) , forb<x<l1, y=0 (33)

sy’
¢(x,0)=0, forx>1, x<b, y=0 (34)

where a, and b, are unknown coefficients to be determined and P{/2!/2)(x) is a Jacobi polynomial
(Gradshteyn and Ryzhik, 1980). The Fourier transformation of Eqs. (31) and (33) is (Erdelyi, 1954)

1-5
A(s) = w(s, 0) ZanBG n+1(s . > (35)
B9 = 66,0) - L20(6,0) = Y (5, - 220, )8,6,6) L (5757 ) (36)
én oy én s 2
1
B, = sz -
(—1)n/2c08< 1+h>7 n=0,2,4.6,...
@)= 38
(S) {(_1)(n+1)/251n( 1+b)’ n=1,35.1,... ( )

where I'(x) and J,(x) are the Gamma and Bessel functions, respectively.
Substituting Egs. (35) and (36) into Egs. (27)-(30), Egs. (28) and (30) can be automatically satisfied,
respectively. Then the remaining Egs. (27) and (29) reduce to the form:

Za,, "/ erfe(es) Gu(s)Jns1 (Sl—;b> cos(sx)ds = %ro(l + 4) (39)
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Z b, —@a,, B,,/ erfc(es) G, (s) a1 s1 —0 cos(sx)ds = _TD, (40)
0 2 2ey

n=0 é11

where A = €|5D0/81]‘50.
So we can obtain that pa,/(1 + 1) does not depend on the materials constants. From Egs. (39) and (40),
it can be shown that the unknown coefficients a, and b, have relation as following:

e;s  Dou ,
b= (5 o To=rto(14 4
(811 811To>a 0 =Tto(l+74)

For a large s, the integrands of Egs. (39) and (40) almost decrease exponentially. So the semi-infinite in-
tegral in Egs. (39) and (40) can be evaluated numerically by Filon’s method (see e.g. Amemiya and Taguchi,
1969). Egs. (39) and (40) can now be solved for the coefficients a, by the Schmidt’s method (Morse and
Feshbach, 1958). For brevity, Eq. (39) can be rewritten as

ianE,,(x) =U(x), b<x<l1 (41)

where E,(x) and U(x) are known functions and a, are unknown coefficients. A set of functions P,(x) which
satisfy the orthogonality condition

1 1
/ Pu()P(x) dx = NySpm, Ny = / P2(x)dx 42)
b b
can be constructed from the function, E,(x), such that
~ M;
P,(x) = ZM E;(x) (43)

i=0
where M,; is the cofactor of the element d;; of D,, which is defined as
_d007 d()l ) d()Za ey dOn i

d107d11)d12a B '7d1n
d207d21)d22) .. .7d2n

_ana dnl ) dn2a ey dnn i
Using Eqgs. (41)-(44), we obtain

00 Mnj
a, =Y q; (45)
; ' M;;
with
1 1
o=y | VR (46)
J

5. Numerical calculations and discussion

From the references (see e.g. Itou, 1978, 1979; Zhou et al., 1999a,b), it can be seen that the Schmidt
method is performed satisfactorily if the first 10 terms of infinite series to Eq. (41) are retained. The
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behavior of the maximum stress stays steady with the increasing number of terms in (41). Coeflicients a,
and b, are known, so that entire stress field and the electric displacement can be obtained. However, in
fracture mechanics, it is important to determine stress 7,. and the electric displacement D, in the vicinity of
the crack’s tips. 7, and D, along the crack line can be expressed respectively as

7,.(x,0) = _EZ(C“M” + elsb,,)Bn/O erfc(es)G, ()11 (s ) cos(xs)ds
= Za / erfc(es)G,(s)J, sl —b cos(xs)ds (47)
— 1+/L v nPn n+l P
2 *© 1-5
D,(x,0) = —;Z(eua,, —enb,)B, i erfc(es)G,(8)J,41 S~ cos(xs)ds
n=0
2D0/.L 1-5 - Do
T ;an n/ erfc(es)G,(s) 1 (s 3 ) cos(xs)ds = - 7,.(x, 0) (48)

For ¢ = 0 at x = b, 1, we have the classical stress singularity. However, so long as ¢ # 0, the semi-infinite
integration and the series in Egs. (47) and (48) are convergent for any variable x. Egs. (47) and (48) give a
finite stress all along y = 0, so there is no stress singularity at the crack tips. At b <x <1, 1,,/70 and
D,1y/D, are very close to unity, and for x > 1, 7,./7o and D,t,/D, possess finite values diminishing from a
finite value at x = 1 to zero at x = co. Since ¢/(1 — b) > 1/100 represents a crack length of less than 100
atomic distances (as stated by Eringen (1979)), we do not pursue solutions valid at such small crack sizes.
From Egs. (39) and (47), it can be obtained that the stress field does not depend on the material constants
except the lattice parameter and the crack length. So in all computation, the material constants are not
considered. Here, we just give the stress field in this paper. The electric displacement field can be obtained
by the stress field using Eq. (48). The results are plotted in Figs. 2-6. The following observations are very
significant:

(1) The maximum stress does not occur at the crack tip, but slightly away from it. This phenomenon has
been thoroughly substantiated by Eringen (1983). The maximum stress is finite. The distance between the
crack tip and the maximum stress point is very small, and it depends on the crack length and the lattice
parameter. It is difficult to determine the distance from the computation. For the sake of analytical sim-
plification and the consistency with the local fracture theory, we just give the stress concentration value at
the crack tips. It does not mean that the stress concentration occurs at the crack tips. The stress concen-
tration values at the crack tip (as stated by Eringen (1978, 1979)) can be given by

72(1,0) /70 = er /v a/[2B(1 = b)] (49)

7,2(b,0)/70 = cL//a/[2B(1 - b)] (50)

where cg, and c¢p represent the stress concentration value at right tip and at left tip for right crack, re-
spectively. The cg is about equal to cg = 0.2708, 0.27275, 0.2764, 0.2787, 0.28071 for b = 0.5, 0.4, 0.3, 0.2
and 0.1, respectively. The ¢ is about equal to 0.3794, 0.38843, 0.4021, 0.4242 and 0.50821 for b = 0.5, 0.4,
0.3, 0.2 and 0.1, respectively. cg and ¢ decrease with the increasing of the distance between two cracks, but
the cr changes slowly.

(i1) The stress at the crack tip becomes infinite as the atomic distance ¢ — 0. This is the classical con-
tinuum limit of square root singularity. This can be shown from Egs. (27)-(30). For a — 0, Egs. (27)—(30)
will reduce to the triple integral equations for the same problem in classical piezoelectric materials. Con-
trary to the classical piezoelectric theory solution, it is found that no stress and electric displacement sin-
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Fig. 2. The variation of anti-plane shear stress along the crack line.
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Fig. 3. The variation of anti-plane shear stress along the crack line.

1739

gularity at the crack tips, and also the present results converge to the classical ones when far away from the

crack tip.

(iii) For a/f = constant, i.e., the atomic distance does not change, the value of the stress concentrations
values (at the crack tip) increase with the increase of the crack length (a/2f! will becomes smaller with the
increase of the crack length /). Noting this fact, experiments indicate that the piezoelectric materials with
smaller cracks are more resistant to fracture than those with larger cracks.

(iv) The significance of this result is that the fracture criteria are unified at both the macroscopic and
microscopic scales, viz., it may solve the problem of any scale cracks (it may solve the problem of any value

of a/2p1).



1740 Z.-G. Zhou, B. Wang | International Journal of Solids and Structures 39 (2002) 1731-1742

T

19 al(2p) = 0.0008

b=01

[S—
[u—y
T

Ji

3| L

—5 nnnnnnnnnn Loy oy ed sl
0. 05 _10 15

X

Fig. 4. The variation of anti-plane shear stress along the crack line.
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Fig. 5. The variation of anti-plane shear stress along the crack line.

(v) The left tip’s stress is greater than the right tip’s for the right crack. At the left end of the right crack,
the stress on the crack line decreases with the increasing of the distance between two cracks.

(vi) The dimensionless stress field is found to be independent of the electric loads D, and the material
parameters. They just depend on the length of the crack 1 — b and the lattice parameter a. The stress field is
not coupled with the electric field. This is consistent with the piezoelectric theory for the impermeable crack
surface conditions in the piezoelectric materials plane. The electric displacement field just depends on the
stress loading 7y, the electric loading Dy, the length of the crack 1 — b, the lattice parameter a. However, for
permeable case, the electric displacement field is independent of &,. It depends on the stress loading 1, the
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, 7,.(6,0)/1,
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2 " )
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Fig. 6. The variation with b of anti-plane shear stress at the crack tips.

length of the crack 1 — b, the lattice parameter @, the shear modulus ¢4 and piezoelectric coefficient e;s
(Zhou et al., submitted for publication).

(vii) In contrast to the permeable crack surface condition solution, it is found that the electric dis-
placement for the impermeable crack surface conditions is much larger than the results for the permeable
crack surface conditions (see, Zhou et al., submitted for publication).

(viii) The stress field 7,.(x,0) has a relation to the electric displacement field D, (x,0) along the crack line
in the form of D, (x,0) = (Dy/70)7,x(x,0). Whereas, for permeable crack boundary conditions, the relation is
D, (x,0) = (e15/cas)T)x(x,0) along the crack line.
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